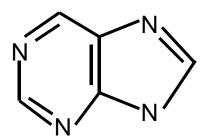
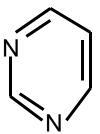

3 Components of a Nucleotide

Both glycosidic and phosphodiester bonds

Therefore, these bonds facilitate nucleotide structural features

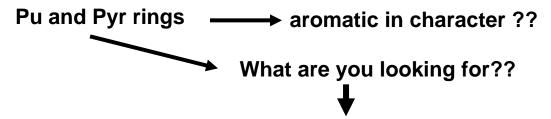

Base Structure and Nomenclature


purine (Pu) base

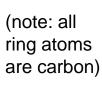
pyrimidine (Pyr) base

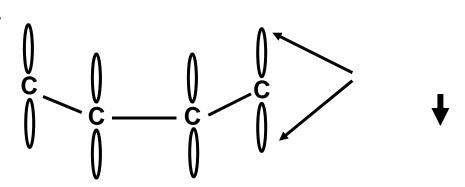
(two rings – 9 constituent atoms)

(one ring – 6 constituent atoms)


Ring numbering designates specific ring atoms

(note: Pu and Pyr rings are numbered differently)


(note: not all ring atoms are carbons)


BASE STRUCTURE and CHEMISTRY

1. Ring Chemistry and Structure

benzene ring

How does non-carbon atoms affect ring structure??

Pu / Pyr ring nitrogens

Pu / Pyr rings aromatic? →

benzene ring structure →

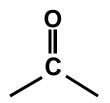
Pu & Pyr ring structure →

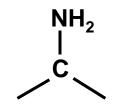
Pu / Pyr ring C and N atoms →

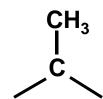
Note: electron distribution is uneven thus affecting the chemical and reactive properties of the constituent ring atoms

2. Base Solubility

solvent of cells and living organisms


pseudoaromatic Pu / Pyr bases


hydrophobic interaction between Pu / Pyr bases


important consequence for nucleic acid structure and base interaction with water

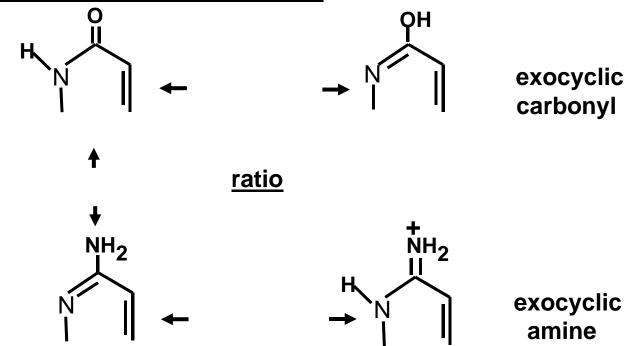
3. Base Exocyclic Modifications

three types of exocyclic base modifications

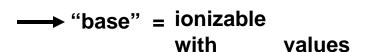
guanine (Pu) —
$$NH_2(2)$$
 = 0 (6)

adenine (Pu) —
$$NH_2$$
 (6)

cytosine (Pyr) =
$$O$$
 (2) - NH_2 (4)

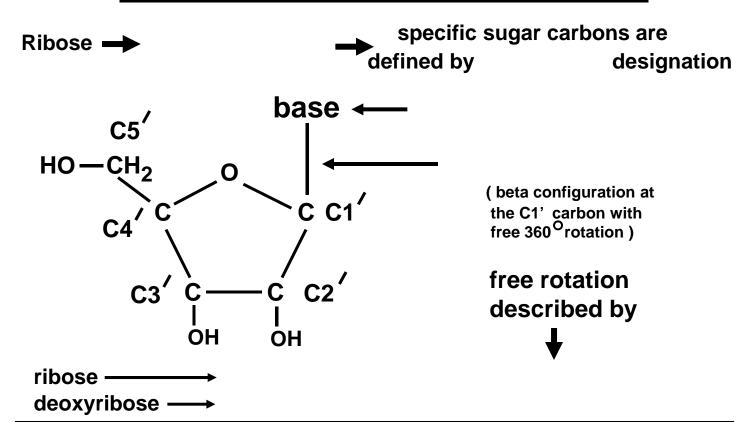

thymine (Pyr) =0 (2) =0 (4)
$$-CH_3$$
 (5)

$$uracil (Pyr) = 0 (2) = 0 (4)$$

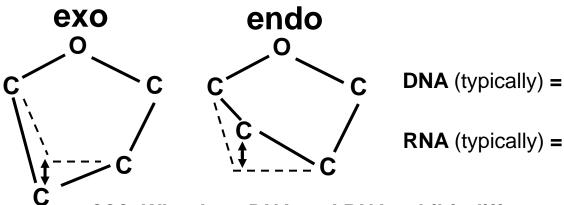

(numbers in parentheses indicate position of exocyclic modification)

??? How do these exocyclic modifications affect the chemical character / reactivity of each base ??

4. Base Tautomeric Forms



5. Ionizable Base Groups


(protons on ring N)

At physiological pH (7.0) → Base charge ? →

Sugar Ring Structure flat planar ring not stabilized by resonance sugar ring carbons (C2' and C3') can twist out of the plane or the stabilized by resonance

- → carbon out of sugar plane towards base
- ---- carbon out of sugar plane away from base

??? Why does DNA and RNA exhibit different puckers?

Sugar – Base Linkage: →

→ free 360 degree rotation around glycosidic bond

 \longrightarrow range of motion/angles around X angle

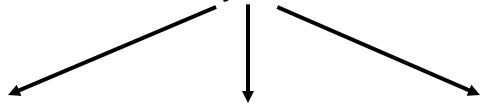
Base Configuration Around the Glycosidic Bond

Bond

purine

pyrimidine

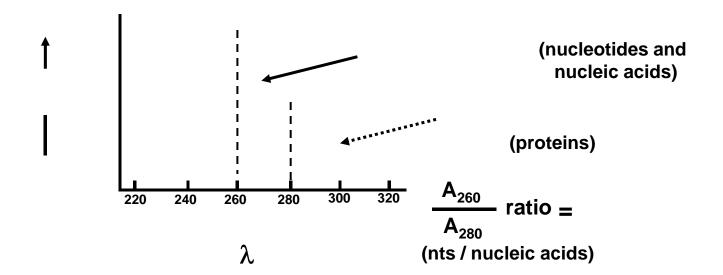
is energetically/sterically favorable


ionization state / protonation dependent upon pH
PO₄ addition makes the nucleotide more soluble

What is the sugar -- PO_4^{-} backbone charge (pH 7)?? \longrightarrow

nucleotide flexibility

(ribose) — O — P — O — CH₂


covalent bonds of free rotation per nucleotide

Important physical property of nucleotides/nucleic acids

ablilty to absorb incident _____ nt base is a radiation or

nt / nucleic acid absorption spectrum

?? What happens to A260/A280 ratio with protein contamination?